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Abstract - Signal analysts already have at their disposal an impressive arsenal of tools. Perhaps the most well-known of these is 
Fourier analysis, which breaks down a signal into constituent sinusoids of different frequencies. Another way to think of Fourier 
analysis is as a mathematical technique for transforming our view of the signal from time-based to frequency-based. 
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INTRODUCTION  
 
                                   Figure 1 
 

 
 For many signals, Fourier analysis is 

extremely useful because the signal’s frequency 
content is of great importance. So we do need other 
techniques, like wavelet analysis. 
   Fourier analysis has a serious drawback. 
In transforming to the frequency domain, time 
information is lost. When looking at a Fourier 
transform of a signal, it is impossible to tell when a 
particular event took place. If the signal properties 
do not change much over time — that is, if it is 
what is called a stationary signal—this drawback 
isn’t very important.     However, most interesting 
signals contain numerous non stationary or 
transitory characteristics: drift, trends, abrupt 
changes, and beginnings and ends of events. These 
characteristics are often the most important part of  
the signal, and Fourier analysis is not suited to 
detecting them. 
Short-Time Fourier Analysis 

In an effort to correct this deficiency, 
Dennis Gabor (1946) adapted the Fourier transform 
to analyze only a small section of the signal at a 
time—a technique called windowing the 
signal.Gabor’s adaptation, called the Short-Time 

FourierTransform (STFT), maps a signal into a 
two-dimensional function of time and frequency. 
 

 
                                  Figure 2 

The STFT represents a sort of compromise 
between the time- and frequency-based views of a 
signal. It provides some information about both 
when and at what frequencies a signal event occurs. 
However, you can only obtain this information with 
limited precision, and that precision is determined 
by the size of the window. While the STFT 
compromise between time and frequency 
information can be useful, the drawback is that 
once you choose a particular size for the time 
window, that window is the same for all 
frequencies. Many signals require a more flexible 
approach—one where we can vary the window size 
to determine more accurately either time or 
frequency. 
Wavelet Analysis 

Wavelet analysis represents the next 
logical step: a windowing technique with variable-
sized regions. Wavelet analysis allows the use of 
long time intervals where we want more precise 
low-frequency information, and shorter regions 
where we want high-frequency information. 
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                                  Figure 3 

Here’s what this looks like in contrast with 
the time-based, frequency-based, and STFT views 
of a signal: 
 

 
                                 Figure 4 

You may have noticed that wavelet 
analysis does not use a time-frequency region, but 
rather a time-scale region. For more information 
about the concept of scale and the link between 
scale and frequency, see “How to Connect Scale to 
Frequency?” 
 
EXPERIMENTATION DESIGN AND SETUP 
Wavelet Analysis - Advantages                                     

One major advantage afforded by wavelets 
is the ability to perform local analysis, that is, to 
analyze a localized area of a larger signal. Consider 
a sinusoidal signal with a small discontinuity — 
one so tiny as to be barely visible. Such a signal 
easily could be generated in the real world, perhaps 
by a power fluctuation or a noisy switch. 

 
                                 Figure 5 
  A plot of the Fourier coefficients (as 
provided by the fft command) of this signal shows 
nothing particularly interesting: a flat spectrum 
with two peaks representing a single frequency. 
However, a plot of wavelet coefficients clearly 
shows the exact location in time of the 
discontinuity. 
 

 
                         Figure 6 

Wavelet analysis is capable of revealing 
aspects of data that other signal analysis techniques 
miss, aspects like trends, breakdown points, 
discontinuities in higher derivatives, and self-

similarity. Furthermore, because it affords a 
different view of data than those presented by 
traditional techniques, wavelet analysis can often 
compress or de-noise a signal without appreciable 
degradation. Indeed, in their brief history within the 
signal processing field, wavelets have already 
proven themselves to be an indispensable addition 
to the analyst’s collection of tools and continue to 
enjoy a burgeoning popularity today. 
What Is Wavelet Analysis? 

Now that it has become evident in some 
situations when wavelet analysis is useful, it is 
worthwhile asking “What is wavelet analysis?” and 
even more fundamentally, 
“What is a wavelet?” A wavelet is a waveform of 
effectively limited duration that has an average 
value of zero. 

Compare wavelets with sine waves, which 
are the basis of Fourier analysis. 
Sinusoids do not have limited duration — they 
extend from minus to plus 
infinity. And where sinusoids are smooth and 
predictable, wavelets tend to be 
irregular and asymmetric. 
 

 
                             Figure 7 
         Fourier analysis consists of breaking up a 
signal into sine waves of various frequencies. 
Similarly, wavelet analysis is the breaking up of a 
signal into shifted and scaled versions of the 
original (or mother) wavelet. Just looking at 
pictures of wavelets and sine waves, you can see 
intuitively that signals with sharp changes might be 
better analyzed with an irregular wavelet than with 
a smooth sinusoid, just as some foods are better 
handled with a fork than a spoon. It also makes 
sense that local features can be described better 
with wavelets that have local extent. 
 Number of Dimensions 

Thus far, the researchers concentrated on 
only one-dimensional data, which encompasses 
most ordinary signals. However, wavelet analysis 
can be applied to two-dimensional data (images) 
and, in principle, to higher dimensional data. This 
toolbox uses only one and two-dimensional 
analysis techniques. 
The Continuous Wavelet Transform: 

Mathematically, the process of Fourier 
analysis is represented by the Fourier transform: 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                 797 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

                                      

 
which is the sum over all time of the signal f(t) 
multiplied by a complex exponential. (Recall that a 
complex exponential can be broken down into real 
and imaginary sinusoidal components.) The results 
of the transform are the Fourier coefficients F(w), 
which when multiplied by a sinusoid of frequency 
w yields the constituent sinusoidal components of 
the original signal. Graphically, the process looks 
like: 
 
 

 
                                   Figure 8 
Similarly, the continuous wavelet transform (CWT) 
is defined as the sum over all time of the signal 
multiplied by scaled, shifted versions of the 
wavelet function   

 
         The result of the CWT is a series many 
wavelet coefficients C, which are a function of 
scale and position. Multiplying each coefficient by 
the appropriately scaled and shifted wavelet yields 
the constituent wavelets of the original signal: 
 

 
                                  Figure 9 
 
Scaling 
 

We’ve already alluded to the fact that 
wavelet analysis produces a time-scale view of a 
signal and now we’re talking about scaling and 
shifting wavelets. 
 

What exactly do we mean by scale in this 
context? 
Scaling a wavelet simply means stretching (or 
compressing) it. 
 

To go beyond colloquial descriptions such 
as “stretching,” we introduce the scale factor, often 
denoted by the letter a.  

 
If we’re talking about sinusoids, for 

example the effect of the scale factor is very easy to 
see: 
 
 

 
                            Figure 10 

The scale factor works exactly the same 
with wavelets. The smaller the scale factor, the 
more “compressed” the wavelet. 
 

 
                            Figure 11 

It is clear from the diagrams that for a 
sinusoid  sin(wt) the scale factor  ‘a’ is related 
(inversely) to the radian frequency ‘w’. Similarly, 
with wavelet analysis the scale is related to the 
frequency of the signal.  
 
 Shifting 
 
         Shifting a wavelet simply means delaying (or 
hastening) its onset. Mathematically, delaying a 
function   (t) by k is represented by    (t-
k)  
 
 

 
 
                                       Figure 12 
 Five Easy Steps to a Continuous Wavelet 
Transform: 
  The continuous wavelet transform is the 
sum over all time of the signal multiplied by scaled, 
shifted versions of the wavelet. This process 
produces wavelet coefficients that are a function of 
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scale and position.  It’s really a very simple 
process. In fact, here are the five steps of an easy 
recipe for  creating a CWT: 
1. Take a wavelet and compare it to a section at the 
start of the original signal. 
2. Calculate a number C  that represents how 
closely correlated the wavelet is with this                         
section of the signal. The higher C is, the more the 
similarity. More precisely, if the signal energy and 
the wavelet energy are equal to one, C may be 
interpreted as a       correlation coefficient. 

Note that the results will depend on the 
shape of the wavelet you choose. 
 
 

 
                         Figure 13 
3. Shift the wavelet to the right and repeat steps 1 
and 2 until you’ve covered the whole signal. 
 

 
                              Figure 14 
4. Scale (stretch) the wavelet and repeat steps 1 
through 3. 
 

 
                            Figure 15 
5. Repeat steps 1 through 4 for all scales. 
 
  When you’re done, you’ll have the 
coefficients produced at different scales by 
different sections of the signal. The coefficients 
constitute the results of a regression of the original 
signal performed on the wavelets. 

How to make sense of all these 
coefficients? You could make a plot on which the 
x-axis represents position along the signal (time), 

the y-axis represents scale, and the color at each x-y 
point represents the magnitude of the wavelet 
coefficient C. These are the coefficient plots 
generated by the graphical tools. 
 

 
                                           Figure 16 
 

These coefficient plots resemble a bumpy 
surface viewed from above. If you could look at the 
same surface from the side, you might see 
something like this: 
 

 
                                       Figure 17 

The continuous wavelet transform 
coefficient plots are precisely the time-scale view 
of the signal we referred to earlier. It is a different 
view of signal data than the time- frequency 
Fourier view, but it is not unrelated. 
 
 
Scale and Frequency: 
 
         Notice that the scales in the coefficients plot 
(shown as y-axis labels) run from 1 to 31. Recall 
that the higher scales correspond to the most 
“stretched” wavelets. The more stretched the 
wavelet, the longer the portion of the signal with 
which it is being compared, and thus the coarser the 
signal features being measured by the wavelet 
coefficients. 
 

 
                                             Figure 18 
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Thus, there is a correspondence between 
wavelet scales and frequency as revealed by 
wavelet analysis: 
• Low scale a=> Compressed wavelet => Rapidly 
changing details => High 
  frequency ‘w’. 
• High scale a=>Stretched wavelet=>Slowly 
changing, coarse features=>Low 
  frequency ‘w’. 
 
 The Scale of Nature: 
                                     

 It’s important to understand the fact that 
wavelet analysis does not produce a time-frequency 
view of a signal is not a weakness, but a strength of 
the technique. 
Not only is time-scale a different way to view data, 
it is a very natural way to view data deriving from a 
great number of natural phenomena. 

 Consider a lunar landscape, whose ragged 
surface (simulated below) is a result of centuries of 
bombardment by meteorites whose sizes range 
from gigantic boulders to dust specks. 

 If we think of this surface in cross-section 
as a one-dimensional signal, then it is reasonable to 
think of the signal as having components of 
different scales—large features carved by the 
impacts of large meteorites, and finer features 
abraded by small meteorites. 
 
                             

 
                                      Figure 19 
         Here is a case where thinking in terms of 
scale makes much more sense than thinking in 
terms of frequency. Inspection of the CWT 
coefficients plot for this signal reveals patterns 
among scales and shows the signal’s possibly 
fractal nature. 
                               

 
                                      Figure 20 

         Even though this signal is artificial, many 
natural phenomena — from the intricate branching 
of blood vessels and trees, to the jagged surfaces of 
mountains and fractured metals — lend themselves 
to an analysis of scale. 
What’s Continuous About the Continuous 
Wavelet Transform? 
 

 Any signal processing performed on a 
computer using real-world data must be performed 
on a discrete signal — that is, on a signal that has 
been measured at discrete time. So what exactly is 
“continuous” about it? 

What’s “continuous” about the CWT, and 
what distinguishes it from the discrete wavelet 
transform (to be discussed in the following 
section), is the set of scales and positions at which 
it operates. 

Unlike the discrete wavelet transform, the 
CWT can operate at every scale, from that of the 
original signal up to some maximum scale that you 
determine by trading off your need for detailed 
analysis with available computational horsepower. 

The CWT is also continuous in terms of 
shifting during computation, the analyzing wavelet 
is shifted smoothly over the full domain of the 
analyzed function. 
 

 
                                         Figure 21 
 
The Discrete Wavelet Transform: 

Calculating wavelet coefficients at every 
possible scale is a fair amount of work, and it 
generates an awful lot of data. What if we choose 
only a subset of scales and positions at which to 
make our calculations? It turns out rather 
remarkably that if we choose scales and positions 
based on powers of two—so-called dyadic scales 
and positions—then our analysis will be much 
more efficient and just as accurate. We obtain such 
an analysis from the discrete wavelet transform 
(DWT). 
 

An efficient way to implement this 
scheme using filters was developed in 1988 by 
Mallat. The Mallat algorithm is in fact a classical 
scheme known in the signal processing community 
as a two-channel sub band coder. This very 
practical filtering algorithm yields a fast wavelet 
transform — a box into which a signal passes, and 
out of which wavelet coefficients quickly emerge. 
Let’s examine this in more depth. 
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One-Stage Filtering: Approximations and 
Details: 
 

For many signals, the low-frequency 
content is the most important part. It is what gives 
the signal its identity. The high-frequency content 
on the other hand imparts flavor or nuance. 
Consider the human voice. If you remove the high-
frequency components, the voice sounds different 
but you can still tell what’s being said. However, if 
you remove enough of the low-frequency 
components, you hear gibberish. In wavelet 
analysis, we often speak of approximations and 
details. The approximations are the high-scale, low-
frequency components of the signal. The details are 
the low-scale, high-frequency components.  

The filtering process at its most basic level 
looks like this: 
                                                        

 
                                                                                  
Figure 22 

The original signal S passes through two 
complementary filters and emerges as two signals. 
Unfortunately, if we actually perform this operation 
on a real digital signal, we wind up with twice as 
much data as we started with. Suppose, for instance 
that the original signal S consists of 1000 samples 
of data. Then the resulting signals will each have 
1000 samples, for a total of 2000. 

These signals A and D are interesting, but 
we get 2000 values instead of the 1000 we had. 
There exists a more subtle way to perform the 
decomposition using wavelets. By looking 
carefully at the computation, we may keep only one 
point out of two in each of the two 2000-length 
samples to get the complete information. This is the 
notion of own sampling. We produce two 
sequences called cA and cD. 
                                

 
                                                                                               
Figure 23 

The process on the right which includes 
down sampling produces DWT Coefficients. To 
gain a better appreciation of this process let’s 
perform a one-stage discrete wavelet transform of a 

signal. Our signal will be a pure sinusoid with high- 
frequency noise added to it. 

Here is our schematic diagram with real 
signals inserted into it: 
                                        

 
                                                                                        
Figure 24 
The MATLAB code needed to generate s, cD, and 
cA is: 
s = sin(20*linspace(0,pi,1000)) + 0.5*rand(1,1000); 
[cA,cD] = dwt(s,'db2'); 
 
Where db2 is the name of the wavelet we want to 
use for the analysis. 
Notice that the detail coefficients cD is small and 
consist mainly of a high-frequency noise, while the 
approximation coefficients cA contains much less 
noise than does the original signal. 
 
[length(cA) length(cD)] 
ans = 501 501 
  It may be observed that the actual lengths 
of the detail and approximation coefficient vectors 
are slightly more than half the length of the original 
signal. This has to do with the filtering process, 
which is implemented by convolving the signal 
with a filter. The convolution “smears” the signal, 
introducing several extra samples into the result. 
Wavelet vs. Fourier analysis:- 
 

 In the well-known Fourier analysis, a 
signal is broken down into constituent sinusoids of 
different frequencies. These sines and cosines 
(essentially complex exponentials) are the basis 
functions and the elements of Fourier synthesis. 
  Taking the Fourier transform of a signal 
can be viewed as a rotation in the function space of 
the signal from the time domain to the frequency 
domain. Similarly, the wavelet transform can be 
viewed as transforming the signal from the time 
domain to the wavelet domain. This new domain 
contains more complicated basis functions called 
wavelets, mother wavelets or analyzing wavelets. 

Mathematically, the process of Fourier 
analysis is represented by the Fourier transform: 
                                                       

 
Which is the sum over all time of the signal f(t) 
multiplied by a complex exponential. 
The results of the transform are the Fourier 
coefficients F(ω), which when multiplied  By a 
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sinusoid of frequency ω, yield the constituent 
sinusoidal components of the original signal. 
 

A wavelet prototype function at a scale s 
and a spatial displacement u is defined as: 
                                                            

 
Replacing the complex exponential in 

Equation 2.1 with this function yields the 
continuous wavelet transform (CWT): 
 
                                                

 
 

 Which is the sum over all time of the 
signal multiplied by scaled and shifted versions of 
the wavelet function ψ. The results of the CWT are 
many wavelet coefficients C, which are a function 
of scale and position. Multiplying each coefficient 
by the appropriately scaled and shifted wavelet 
yields the constituent wavelets of the original 
signal. The basis functions in both Fourier and 
wavelet analysis are localized in frequency making 
mathematical tools such as power spectra (power in 
a frequency interval) useful at picking out 
frequencies and calculating power distributions. 
 

 The most important difference between 
these two kinds of transforms is that individual 
wavelet functions are localised in space. In contrast 
Fourier sine and cosine functions are non-local and 
are active for all time t. This localisation feature, 
along with wavelets localisation of frequency, 
makes many functions and operators using 
wavelets. Sparse. When transformed into the 
wavelet domain. This sparseness, in turn results in 
a number of useful applications such as data 
compression, detecting features in images and de-
noising signals. 
Time-Frequency Resolution:- 
                 A major draw back of Fourier analysis is 
that in transforming to the frequency domain, the 
time domain information is lost. When looking at 
the Fourier transform of a signal, it is impossible to 
tell when a particular event took place. In an effort 
to correct this deficiency, Dennis Gabor (1946) 
adapted the Fourier transform to analyse only a 
small section of the signal at a time. A technique 
called windowing the signal [14]. Gabor.s 
adaptation, called the Windowed Fourier 
Transform (WFT) gives information about signals 
simultaneously in the time domain and in the 
frequency domain. 

To illustrate the time-frequency resolution 
differences between the Fourier transform and the 
wavelet transform consider the following figures. 

 
 
              Figure 2.1 shows a windowed Fourier 
transform, where the window is simply a square 
wave. The square wave window truncates the sine 
or cosine function to fit a window of a particular 
width. Because a single window is used for all 
frequencies in the WFT, the resolution of the 
analysis is the same at all locations in the time 
frequency plane. An advantage of wavelet 
transforms is that the windows vary. Wavelet 
analysis allows the use of long time intervals where 
we want more precise low-frequency information, 
and shorter regions where we want high-frequency 
information. A way to achieve this is to have short 
high-frequency basis functions and long low-
frequency ones.  

 
 
              Figure 2.2 shows a time-scale view for 
wavelet analysis rather than a time frequency 
region. Scale is inversely related to frequency. A 
low-scale compressed wavelet with rapidly 
changing details corresponds to a high frequency. 
A high-scale stretched wavelet that is slowly 
changing has a low frequency. 
 Examples of Wavelets:- 

The figure below illustrates four different 
types of wavelet basis functions. 
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The different families make trade-offs 

between how compactly the basis functions are 
localized in space and how smooth they are. Within 
each family of wavelets (such as the Daubechies 
family) are wavelet subclasses distinguished by the 
number of filter coefficients and the level of 
iteration. Wavelets are most often classified within 
a family by the number of vanishing moments. This 
is an extra set of mathematical relationships for the 
coefficients that must be satisfied. The extent of 
compactness of signals depends on the number of 
vanishing moments of the wavelet function used.  
 
The Discrete Wavelet Transform:- 

 The Discrete Wavelet Transform (DWT) 
involves choosing scales and positions based on 
powers of two. So called dyadic scales and 
positions. The mother wavelet is rescaled or dilated 
by powers of two and translated by integers. 

Specifically, a function f(t)  L2(R) (defines 
space of square integrable functions) can be 
represented as 
 
                                      

 
 

The function ψ(t) is known as the mother 
wavelet, while φ(t) is known as the scaling 
Function. The set of functions 
  
                                           

 
                      

Where Z is the set of integers is an 
orthonormal basis for L2(R). 
 

The numbers a(L, k) are known as the 
approximation coefficients at scale L, while d(j,k) 
are known as the detail coefficients at scale j. 

The approximation and detail coefficients 
can be expressed as: 

 
                
 

 To provide some understanding of the 
above coefficients consider a projection fl(t) of the 
function f(t) that provides the best approximation 
(in the sense of  minimum error energy) to f(t) at a 
scale l. This projection can be constructed from the 
coefficients a(L, k), using the equation 
                                                         

 
As the scale l decreases, the 

approximation becomes finer, converging to f(t) as 
l → 0. The difference between the approximation at 
scale l + 1 and that at l, fl+1(t) - fl(t), is 
completely described by the coefficients d(j, k) 
using the equation 
 
                                                          

 
              Using these relations, given a(L, k) and 
{d(j, k) | j ≤ L}, it is clear that we can build the 
approximation at any scale. Hence, the wavelet 
transform breaks the signal up into a coarse 
approximation fL(t) (given a(L, k)) and a number 
of layers of detail {fj+1(t)-fj(t)| j < L} (given by 
{d(j, k) | j ≤ L}). As each layer of detail is added, 
the approximation at the next finer scale is 
achieved. 
Vanishing Moments 
  The number of vanishing moments of a 
wavelet indicates the smoothness of the wavelet 
function as well as the flatness of the frequency 
response of the wavelet filters (filters used to 
compute the DWT).Typically a wavelet with p 
vanishing moments satisfies the following equation 
. 
 
                                              

 
or equivalently, 
 

 

                
 For the representation of smooth signals, 

a higher number of vanishing moments leads to a 
faster decay rate of wavelet coefficients. Thus, 
wavelets with a high number of vanishing moments 
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lead to a more compact signal representation and 
are hence useful in coding applications.  
  However, in general, the length of the 
filters increases with the number of vanishing 
moments and the complexity of computing the 
DWT coefficients increases with the size of the 
wavelet filters. 
RESULTS AND DISCUSSION 
  The Discrete Wavelet Transform (DWT) 
coefficients can be computed by using 
Mallat.s Fast Wavelet Transform algorithm. This 
algorithm is sometimes referred to as 
the two-channel sub-band coder and involves 
filtering the input signal based on the 
wavelet function used. 
 
Implementation Using Filters 

To explain the implementation of the Fast 
Wavelet Transform algorithm consider the 
following equations: 
 

 
 
  The first equation is known as the twin-
scale relation (or the dilation equation) and defines 
the scaling function φ. The next equation expresses 
the wavelet ψ in terms of the scaling function φ. 
The third equation is the condition required for the 
wavelet to be 
Orthogonal to the scaling function and its 
translates. 
  The coefficients c(k) or {c0, .., c2N-1} in 
the above equations represent the impulse response 
coefficients for a low pass filter of length 2N, with 
a sum of 1 and a norm of1/2 
The high pass filter is obtained from the low pass 
filter using the relationship 
g ( )k c( k ) k = −1 1− , where k varies over the 
range (1 . (2N . 1)) to 1. 
  Equation 2.7 shows that the scaling 
function is essentially a low pass filter and is used 
to define the approximations. The wavelet function 
defined by equation 2.8 is a high 
pass filter and defines the details. 
               Starting with a discrete input signal vector 
s, the first stage of the FWT algorithm decomposes 
the signal into two sets of coefficients. These are 
the approximation coefficients cA1 (low frequency 
information) and the detail coefficients cD1 (high 
frequency information), as shown in the figure 
below. 
 

                        

 
 

The coefficient vectors are obtained by 
convolving s with the low-pass filter Lo_D for 
Approximation and with the high-pass filter Hi_D 
for details. This filtering operation is then followed 
by dyadic decimation or down sampling by a factor 
of 2. Mathematically the two-channel filtering of 
the discrete signal s is represented by the 
expressions: 

 
  These equations implement a convolution 
plus down sampling by a factor 2 and give the 
forward fast wavelet transform. 
             If the length of each filter is equal to 2N 
and the length of the original signal s is equal to n, 
then the corresponding lengths of the coefficients 
cA1 and cD1 are given by the formula: 

 
 
  This shows that the total length of the 
wavelet coefficients is always slightly greater than 
the length of the original signal due to the filtering 
process used. 
  
 
Multilevel Decomposition:- 

 The decomposition process can be 
iterated, with successive approximations being 
decomposed in turn, so that one signal is broken 
down into many lower resolution 
Components. This is called the wavelet 
decomposition tree. 
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The wavelet decomposition of the signal s 
analysed at level j has the following structure [cAj, 
cDj, ..., cD1]. 

Looking at a signals wavelet 
decomposition tree can reveal valuable 
information. The diagram below shows the wavelet 
decomposition to level 3 of a sample signal S. 

 
 
  Since the analysis process is iterative, in 
theory it can be continued indefinitely. In reality, 
the decomposition can only proceed until the vector 
consists of a single sample. Normally, however 
there is little or no advantage gained in 
decomposing a signal beyond a certain level. The 
selection of the optimal decomposition level in the 
hierarchy depends on the nature of the signal being 
analyzed or some other suitable criterion, such as 
the low-pass filter cut-off. 
Signal Reconstruction:- 

The original signal can be reconstructed or 
synthesized using the inverse discrete wavelet 
transform (IDWT). The synthesis starts with the 
approximation and detail coefficients cAj and cDj, 
and then reconstructs cAj-1 by up sampling and 
filtering with the reconstruction filters. 

 
 
                      The reconstruction filters are 
designed in such a way to cancel out the effects of 
aliasing introduced in the wavelet decomposition 
phase. The reconstruction filters (Lo_R and Hi_R) 
together with the low and high pass decomposition 
filters, forms a system known as quadrature mirror 
filters (QMF). 
                       For a multilevel analysis, the 
reconstruction process can itself be iterated 
producing successive approximations at finer 
resolutions and finally synthesizing the original 
signal.  
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